CALCULO DIFERENCIAL 1.0

La asignatura de Cálculo Diferencial se organiza en cinco temas.

El primer tema se inicia con un estudio sobre los números reales y sus propiedades básicas, así como la solución de problemas con desigualdades. Esto servirá de sustento para el estudio de las funciones de variable real.

El tema dos incluye el estudio del dominio y rango de funciones, así como las operaciones relativas a éstas. También las funciones simétricas, par e impar, escalonadas (definidas por más de una regla de correspondencia), crecientes y decrecientes, periódicas, de valor absoluto, etc.

En el tema tres se introduce la noción intuitiva de límite, así como la definición formal. Se aborda el cálculo de límites por valuación, factorización, racionalización, de límites trigonométricos y los límites laterales. Se incluyen casos especiales de límites infinitos y límites al infinito, así como asíntotas horizontales y verticales. El tema concluye con el estudio de la continuidad en un punto y en un intervalo.

La derivada, en el tema cuatro, se aborda de manera intuitiva obteniendo la pendiente de la recta tangente a una curva y como una razón de cambio. La definición de derivada permite deducir propiedades y reglas de derivación de funciones.

El último tema consiste principalmente en aplicar las propiedades y reglas de derivación para modelar y resolver problemas de razones de cambio y optimización específicos de cada área.

El Cálculo Diferencial contribuye principalmente para el desarrollo de las siguientes competencias genéricas: de capacidad de abstracción, análisis y síntesis, capacidad para identificar, plantear y resolver problemas, habilidad para trabajar en forma autónoma, habilidades en el uso de las TIC’s, capacidad crítica y autocrítica y la capacidad de trabajo en equipo.